"In the past design teams have typically had to choose between a slower simulation time for a full system-level transient model simulation or a less accurate fixed-rotor approach," said Derrek Cooper, product manager, Blue Ridge Numerics. "With the new capabilities in the Motion Module, CFdesign now offers a more complete and reliable solution that is faster than any other options out there, so design teams no longer have to sacrifice accuracy for speed."
The significant performance increases the Cornell team experienced using CFdesign will have major implications for development of new pumps. Beyond cutting computer simulation time from weeks to hours, it is expected to reduce the number of pump castings that have to be made for physical testing. Eliminating just one of the physical tests could save the Cornell team as much as three months of development time.
"With much faster running speeds, we will be able to do many more simulation runs in less time," said Andrew Enterline, design engineer, Cornell Pump Company. "We'll spend more time designing the product and less time and money in pattern rework, re-pouring castings, and physical development testing, helping us create more optimized product designs from the start."
In the past, generating a typical pump curve for the Cornell design team required 300 iterations at 1.5 iterations per hour to evaluate a single design, so the team explored options to speed up the development cycle. New rotational algorithms for transient rotating modeling included in the latest release of the Motion Module help speed up simulation time by 20x on a standard desktop computer, allowing Cornell and other design teams to more quickly and accurately evaluate performance curves. In addition, the Motion Module can be combined with the new CFdesign HPC Module to provide an overall 100x speed up. Cornell leveraged the power of the Motion and HPC Modules to speed up their design process by partnering with R Systems, a provider of high-end computing resources for research, to conduct their simulations on an 8 node HPC cluster setup, allowing them to complete 300 iterations now in only two hours.
About the CFdesign Motion Module
Several mechanical engineering applications require understanding of the behavior of liquid and gas flows as they interact with solid objects. The CFdesign Motion Module allows users to create a virtual prototyping environment to better understand these behaviors by simulating the way components interact and respond to prescribed flows. All the physical effects of the motion as well as the time-history are output for data review and to create animations for visual studies. In addition to the simulation of rotating turbomachinery described, CFdesign also helps engineers model:
-- Flow-Driven Motion -- Orbital Motion -- Nutating Disk Motion -- Combined Linear and Angular Motion -- Sliding Vane Pump Motion -- Automatic and Adaptive Time Step Determination -- External Driving and Spring Resistance Models
About the CFdesign HPC Module
The CFdesign HPC Module allows CFdesign users to harness the power and investment of Windows HPC Server 2008, enabling more design studies in less time and reducing the time it takes to achieve solutions for large complex models. The Module can be used with a small cluster, a data center, or service providers, such as R Systems to gain access to HPC resources.
CFdesign, Motion Module, and HPC Module Availability
CFdesign v10, the Motion Module, and the HPC Module are all available immediately as an integrated, associative solution for Autodesk Inventor, CATIA, CoCreate, NX, Pro/ENGINEER, SolidWorks, Solid Edge, and SpaceClaim.
For further information or to purchase CFdesign contact a local sales office or visit the Company's website: http://www.cfdesign.com
About Cornell Pump Company
Cornell Pump Company has been providing centrifugal pumps since 1946. Cornell pumps are used in water intake, water processing, pressure boosting, refineries, energy recovery, cooling towers, distillation systems, wastewater processing, mining and power plants. Cornell pumps are engineered and manufactured to provide dependable, efficient and economical operation.
About R Systems
R Systems NA, Inc. is a privately held corporation providing high-end computing resources for research. R Systems offers a rapid-response, queue-sensitive production environment with utility or dedicated access depending upon your project. Custom service-level agreements are available if needed. R Systems provides services aimed at benefiting the commercial research community and improving the quality of life throughout the planet.
About Blue Ridge Numerics
Blue Ridge Numerics, Inc. is the fastest-growing CFD software company in the world and consistently ranked among the fastest-growing technology companies in North America. The company's CFdesign upfront CFD software integrates comprehensive fluid-flow and heat-transfer simulation into early phases of design and engineering, when companies can dramatically improve product quality, time-to-market, and ultimately profitability through the product life cycle. Learn more at www.cfdesign.com.
CFdesign is a registered trademark of Blue Ridge Numerics. Other product or brand names may be trademarks or registered trademarks of their respective holders.
Image Available:
http://www2.marketwire.com/mw/frame_mw?attachid=969524
Add to Digg Bookmark with del.icio.us Add to Newsvine
For Media Inquiries Contact: Rebecca Porter Blue Ridge Numerics Ph: 1.434.977.2764 ext.152 Email Contact