Osteoporosis is a common and potentially life-threatening condition that causes patients to suffer unusually low bone mass, making bones weak, brittle and susceptible to fracture. Thirty percent to 50 percent of all women and 15 percent to 30 percent of all men will face an osteoporotic fracture in their lifetimes. In Europe, there are approximately 4 million fractures as a result of osteoporosis every year. The condition results in disability and direct hospital expenses that cost €30 billion (approximately $38 billion U.S.) annually. With an aging population, the cost is set to double by the year 2050 (source: International Osteoporosis Foundation).
Current treatments for osteoporosis focus on fracture prevention through a risk assessment based on historical patient data from similar reference populations. VPHOP takes a different approach by personalizing risk assessment. The project will develop patient-specific computer models based on conventional diagnostic imaging methods, incorporating the results of engineering simulation studies using software from ANSYS, to predict the daily loading of the skeleton for normal and abnormal activities. The computer models will allow clinicians to predict the actual risk and location of fracture for each patient, currently and into the future.
“The current approaches to fracture risk assessment oversimplify what is an extremely complex and multifaceted problem,” said Dr. Marco Viceconti, coordinator of VPHOP. “These approaches are only 60 percent to 70 percent accurate. But by applying the latest technology and using the analysis procedures we are developing, in conjunction with current approaches, we believe we will be able to substantially improve this figure.”
“Our multiphysics engineering simulation software has enormous potential in the area of biomechanics and pharmacology. The fact that we can play an important role in VPHOP and help to improve and extend the lives of millions of people is both humbling and quite extraordinary,” said Jim Cashman, president and chief executive officer of ANSYS, Inc. “This project also demonstrates how our software can be a real driver in the development of patient-specific healthcare. Once you have the geometry of part of an individual’s anatomy — something easily available via CT or MRI scan — you also have the technology to run simulations of structural, fluid, and heat flows along with electric and magnetic fields, all of which are critical to the operation of the human body. The potential growth for engineering simulation in the healthcare industry is immense.”
VPHOP is being driven by a consortium of 19 European organizations, including ANSYS France. It is one of only a handful of studies to successfully gain funding from the European Commission for its research initiative, “The Virtual Physiological Human.”
Running for four years until 2012, the VPHOP consortium will enable clinicians to provide accurate prognoses and implement more-effective treatment strategies based on both drug treatments and forms of direct intervention treatment. A searchable database will be developed as part of this collaboration, which could later be used for any patient specific-modeling for applications ranging from osteoporosis to cardiovascular disease to cerebral aneurysm.
For downloadable images, visit http://www.ansys.com/newsimages.
About VPHOP
VPHOP is a Collaborative Integrated Project co-funded by the European Commission (about 10MEuro) under the European Commission's 7th Framework Programme. The project runs for 4 years from September, 2008. Coordinated by Rizzoli Orthopaedic Institute, a scientific research hospital with a high degree of integration between healthcare and scientific research carried out in nine laboratories. The Project Consortium gathers 19 European organizations based in Italy, The Netherlands, Germany, Switzerland, Belgium, France, United Kingdom, Sweden and Iceland. Visit www.vphop.com for more information.
About ANSYS, Inc.
ANSYS, Inc., founded in 1970, develops and globally markets engineering
simulation software and technologies widely used by engineers and
designers across a broad spectrum of industries. The Company focuses on
the development of open and flexible solutions that enable users to
analyze designs directly on the desktop, providing a common platform for
fast, efficient and cost-conscious product development, from design
concept to final-stage testing and validation. The Company and its
global network of channel partners provide sales, support and training
for customers. Headquartered in Canonsburg, Pennsylvania, U.S.A., with
more than 60 strategic sales locations throughout the world, ANSYS, Inc.
and its subsidiaries employ approximately 1,700 people and distribute
ANSYS products through a network of channel partners in over 40
countries. Visit
www.ansys.com
for more information.