True Circuits Announces Availability of JSPICE™ Simulation and Design Environment - Invites users to attend presentations and Demos at the 60th DAC and participate in beta test in advance of full commercial release

LOS ALTOS, California, July 5, 2023 -- True Circuits, Inc. (TCI), a leading provider of analog and mixed-signal intellectual property (IP) for the semiconductor, systems and electronics industries announced today the availability of a beta test for its powerful simulation and design environment called JSPICE™ in advance of a full commercial release. JSPICE has been under continuous development and use by True Circuits for over 25 years to create complex analog and digital circuits and is the basis for the world-class timing and DDR PHY IP that have made True Circuits an industry leading IP company. JSPICE has allowed True Circuits to manage every aspect of the definition, design, characterization, optimization and testing processes in a standardized, centralized and repeatable way. As a way of giving back to the global design community, JSPICE is now available for beta testing to a select group of users in preparation for a full commercial release.

"TCI has long benefited from this powerful environment which allowed a small design team to simultaneously support a growing family of mixed-signal IP blocks in over 100 different IC processes from 250nm to 4nm", said John Maneatis, President of True Circuits, Inc. "While reflecting on the 25th anniversary of our company and all we have accomplished, what stood out was how fundamentally important the JSPICE environment has been. It only seemed fitting that we finally share this incredible enabler with fellow designers looking for an edge in their ever more challenging work. JSPICE makes it easy to describe complex circuit structures and rapidly build intuition with quick and complete characterizations. Once people start using it, they will never want to work without it.”

About JSPICE™

JSPICE is a powerful simulation and design environment that greatly simplifies and expedites the process of designing and characterizing complex analog and digital circuits by dramatically facilitating and enhancing the process of running simulations and interpreting their results. It provides extended input preprocessing, timing analysis, mixed-mode simulation, generalized waveform analysis, parametric simulation sweeps and optimization, parallel simulation job control, network process and cloud management, and data reduction and output processing. Characterization flows allow users to encapsulate all information needed to automatically and fully characterize a design and even generate reports. JSPICE also provides a powerful mechanism for schematic-based electrical checks for use by users who want all of the advanced features of JSPICE, but with a simplified workflow. While JSPICE includes a core SPICE simulator with some features facilitated by the JSPICE preprocessor, it can work with any SPICE simulator.

JSPICE makes it easy to express complicated circuits, run a large set of simulations in parallel, perform complex waveform analysis and reduce the results to a form easily understandable by the user, all leading to very rapid turnaround of circuit characterizations. As such, it enables the user to quickly and easily close the loop on the design process. The user can iterate through design changes every few minutes after viewing complete characterization of the circuit rerun after each design change, allowing users to gain insight into the operation of a circuit in less than an hour. The short period of time between iterations allows the user to gain an unprecedented level of insight into the operation of the circuit so that the design can be completed in a matter of hours rather than days.

Waveform analysis using JSPICE can be performed on waveform data from new simulations as well as those that have already been run. The waveform analysis program is also coupled with a powerful parametric sweep and optimization engine that is capable of running simulation jobs individually or in parallel through one of several process servers, including LSF. The process server included with JSPICE allows users to run single simulations or thousands in parallel with no additional effort. It enables the use of local servers as well as seamless and dynamic expansion to cloud-based servers (AWS™, Azure™, Google Cloud™), with the ability to manage millions of servers and a ridiculously high job processing bandwidth of over 200,000 jobs per second.

For more information about JSPICE, visit www.truecircuits.com/jspice.html.

JSPICE™ at the 60th Design Automation Conference

True Circuits will showcase the JSPICE simulation and design environment at the 60th Design Automation Conference (DAC) in San Francisco, CA from July 10 to 12, 2023 at Moscone Convention Center, West Hall, Booth #1335.  DAC attendees will be offered daily presentations and demos highlighting the features and uses of this powerful design platform.  The JSPICE presentation schedule is as follows:

Monday July 10, 11:00 AM, 2:00 PM and 4:00 PM

Tuesday July 11, 11:00 AM, 2:00 PM and 4:00 PM

Wednesday July 12, 11:00 AM, 2:00 PM and 4:00 PM

DAC attendees can register for a JSPICE presentation day and time and also become eligible for a prize at www.truecircuits.com/jspice_dac2023_pres.html.

For those DAC attendees who would like a private JSPICE demo, please register at   www.truecircuits.com/jspice_dac2023_demo.html.

JSPICE™ Beta Test

JSPICE is now available for beta testing to a select group of users in preparation for a full commercial release.  Interested users, whether individuals, students or employees of companies, can submit a beta test application at www.truecircuits.com/jspice_beta.html. The application process will ask users to agree to the terms of the beta testing program, including providing periodic feedback and participating in user forums. Initially a small set of users will be selected by True Circuits, at its sole discretion, to begin beta testing for a selected period of time. This set will be expanded later. Approved users will be provided the JSPICE software suite, user guidelines, related documentation and a True Circuits point of contact for user support and feedback.

About True Circuits Analog PLLs and DLLs
True Circuits offers a complete family of standardized and silicon-proven general purpose, clock generator, deskew, spread spectrum, IoT and Ultra PLLs, and multi-slave and multi-phase DLLs that spans nearly all performance points and features typically requested by ASIC, FPGA and SoC designers. These high quality, low-jitter PLL and DLL hard macros are suited to a wide variety of interface standards and chip applications. They are pin-programmable, highly process tolerant and reusable. They are also easy to integrate and are fully supported, so customers can reduce both design and silicon risks.

True Circuits PLLs support a wide range of frequencies, multiplication factors and functions over which they deliver optimal performance, avoiding the cost and complexity of licensing multiple point-solution PLLs or fiddling with digital PLLs. TCI’s PLLs are available with ring-oscillator and LC-tank architectures, fractional-N division and frequency spreading for EMI reduction. TCI's DLLs are available in multi-slave and multi-phase versions and different sizes and form factors. They delay a set of signals by precise and adjustable fractions of a reference clock cycle independent of voltage and temperature and are ideal for high-speed DDR and ONFI interface applications. Customized PLL and DLL solutions are also available for specialized chip applications.

True Circuits PLLs and DLLs are available for immediate customer delivery in TSMC, GLOBALFOUNDRIES and UMC processes from 180nm to 4nm. For more information about True Circuits IP products, visit  www.truecircuits.com/tci_technology.html and www.truecircuits.com/product_matrix.html.

About True Circuits Synthesizable PLLs and DLLs
The synthesizable Precision PLL generates multiple precision clocks supporting any modulation scheme from almost DC to 10GHz. The outputs can be independently dynamically programmed cycle-by-cycle to any clock period and the clock frequency can be a precise ratio of floating point numbers times the reference frequency. The integrated phase noise is better than 500ps RMS.  It is ideal for SerDes, processor and DVFS applications.

The synthesizable micro PLL is a small synthesizable general-purpose PLL that multiplies the reference clock by any integer or fractional-N value from 1 to 500K. It supports reference clock frequencies as low as 32KHz and output frequencies as high as 3GHz. It can stay locked to the reference clock while it changes over a 10:1 frequency range.  Because it is synthesizable, it can support spreading as well as other modulation profiles. It is relatively low power, very fast locking and can quickly restart from a sleep mode.

The synthesizable micro DLL is a small synthesizable DLL with a master and multiple slaves topology. It can support reference frequencies typically in the range of 500MHz to 3GHz and track reference changes over an 8:1 frequency range while providing 9-bit accuracy in slave delay programming. Slave delays can be changed glitch free and the DLL can quickly restart from a sleep mode. It has a very small zero code offset that can be precisely cancelled.

1 | 2  Next Page »


Read the complete story ...
Featured Video
Latest Blog Posts
Sanjay GangalGISCafe Guest
by Sanjay Gangal
GISCafe Industry Predictions for 2025 – NV5
Jobs
Business Development Manager for Berntsen International, Inc. at Madison, Wisconsin
Upcoming Events
Consumer Electronics Show 2025 - CES 2025 at Las Vegas Convention Center Las Vegas NV - Jan 7 - 10, 2025
GeoBuiz Summit 2025 at Hyatt Regency Aurora-Denver Conference Center. Denver CO - Jan 13 - 15, 2025
Coastal GeoTools 2025 Conference at 301 North Water Street - Jan 27 - 30, 2025



© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation TechJobsCafe - Technical Jobs and Resumes  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise