CEA-Leti Proof of Concept Demonstrates Electrons Move Faster in Germanium Tin Than in Silicon or Germanium

Results Reported in Nature Article Suggest Vertical GeSn Transistors May Someday Enable Low-Power, High-Performance Chips and Quantum Computers

GRENOBLE, France – June 2, 2023 – CEA-Leti research scientists have demonstrated that electrons and other charge carriers can move faster in germanium tin than in silicon or germanium, enabling lower operation voltages and smaller footprints in vertical than in planar devices. This proof-of-concept breakthrough means vertical transistors made of germanium tin are promising candidates for future low-power, high-performance chips and possibly quantum computers.

Germanium–tin transistors exhibit an electron mobility that is 2.5 times higher than a comparable transistor made of pure germanium. GeSn is otherwise compatible with the existing CMOS process for chip fabrication. Because germanium and tin come from the same periodic table group as silicon, these transistors could be integrated directly into conventional silicon chips with existing production lines.

A recently published paper in Nature Communications Engineering, Vertical GeSn Nanowire MOSFETs for CMOS Beyond Silicon, notes that “GeSn alloys offer a tunable energy bandgap by varying the Sn content and adjustable band off-sets in epitaxial heterostructures with Ge and SiGe. In fact, a recent report has shown that the use of Ge0.92Sn0.08 as source on top of Ge nanowires (NWs) enhances the p-MOSFET performances.”

“In addition to their unprecedented electro-optical properties, a major advantage of GeSn binaries is also that they can be grown in the same epitaxy reactors as Si and SiGe alloys, enabling an all-group IV optoelectronic semiconductor platform that can be monolithically integrated on Si,” the paper reports.

That project research included contributions from several organizations in addition to CEA-Leti, which delivered the epitaxial stacks. Epitaxy is carried out on a very ordered template, a silicon substrate, with a very precise crystal structure. By changing the material, CEA-Leti duplicated its diamond crystalline structure in the layers it put on top.

“Epitaxy is the art of making multi-layers by duplicating the original structure and is performed at low temperature with gaseous precursors in a chemical vapor deposition (CVD) reactor,” said Jean-Michel Hartmann, a CEA Fellow and team leader, group-IV epitaxy at CEA-Leti.

Depositing this kind of stack and mastering the epitaxial-layer growth is an extremely complex step in a process flow requiring patterned cylinders and conformal gate stack deposition – in short, manufacturing the entire  device. CEA-Leti, one of the few RTOs globally that is able to deposit such complex in-situ doped Ge/GeSn stacks, performed that part of the joint research reported in the paper.

“The collaboration demonstrated the potential of low-bandgap GeSn for advanced transistors with interesting electrical properties, such as high carrier mobilities in the channel, low operating voltages and a smaller footprint,” explained Hartmann, a co-author of the paper. “Industrialization is still far away. We are advancing on the state of the art and showing the potential of germanium tin as a channel material.”

The work also included scientists from ForschungsZentrum Jülich, Germany; the University of Leeds, United Kingdom; IHP- Innovations for High Performance Microelectronics, Frankfurt (Oder), Germany, and RWTH Aachen University, Germany.

Jean-Michel Hartmann received the Electronics and Photonics Division Award  at the recent Electrochemical Society conference in Boston.

As the honoree, Hartmann presented a paper on May 30, Epitaxy of Group-IV Semiconductors for Nanoelectronics and Optoelectronics, covering how epitaxy can be put to good use to boost properties of devices.

Hartmann is a CEA Fellow at CEA-Leti, leader of the working group in IV epitaxy, and the SSURF department’s scientific director. His research focuses on the reduced pressure chemical vapor deposition of group-IV semiconductors for nanoelectronics and optoelectronics.

 

About CEA-Leti

Leti, a technology research institute at CEA, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, CEA-Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. CEA-Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, CEA-Leti’s  multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 3,200 patents, 11,000 sq. meters of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. CEA-Leti has launched 76 startups and is a member of the Carnot Institutes network. Follow us on www.leti-cea.com and @CEA_Leti.

Technological expertise

CEA has a key role in transferring scientific knowledge and innovation from research to industry. This high-level technological research is carried out in particular in electronic and integrated systems, from microscale to nanoscale. It has a wide range of industrial applications in the fields of transport, health, safety and telecommunications, contributing to the creation of high-quality and competitive products.

For more information: www.cea.fr/english 

Press Contact                                                                                

Agency

Sarah-Lyle Dampoux

Email Contact

+33 6 74 93 23 47



Read the complete story ...
Featured Video
Latest Blog Posts
Sanjay GangalGISCafe Guest
by Sanjay Gangal
GISCafe Industry Predictions for 2025 – NV5
Jobs
Business Development Manager for Berntsen International, Inc. at Madison, Wisconsin
Upcoming Events
Consumer Electronics Show 2025 - CES 2025 at Las Vegas Convention Center Las Vegas NV - Jan 7 - 10, 2025
GeoBuiz Summit 2025 at Hyatt Regency Aurora-Denver Conference Center. Denver CO - Jan 13 - 15, 2025
Coastal GeoTools 2025 Conference at 301 North Water Street - Jan 27 - 30, 2025



© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation TechJobsCafe - Technical Jobs and Resumes  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise