Imec demonstrates successful monolithic integration of Schottky diodes and depletion-mode HEMTs with 200 V GaN-IC

The addition of these components will boost the performance of GaN power systems.

LEUVEN (Belgium), 13 December 2021— This week, at the 2021 International Electron Devices Meeting (IEEE IEDM 2021), imec, a world-leading research and innovation center in nanoelectronics and digital technologies, presents the successful co-integration of high-performance Schottky barrier diodes and depletion-mode HEMTs on a p-GaN HEMT-based 200 V GaN-on-SOI smart power integrated circuits (ICs) platform developed on 200 mm substrates. The addition of these components enables the design of chips with extended functionality and increases performance that takes monolithically-integrated GaN power ICs one step further. This achievement paves the way towards smaller and more efficient DC/DC convertors  and Point-of-Load convertors .

Today, GaN power electronics are still dominated by discrete components driven by an external driver IC that generates the switching signals. However, to take full advantage of the fast-switching speed, GaN offers, monolithic integration of power devices and driver functions is recommended. Imec has already successfully demonstrated the monolithic co-integration of a half-bridge and drivers with control and protection circuits that are key to an integrated all-GaN power IC in one chip.

One of the main hurdles to boost the full performance of GaN power ICs remains finding a suitable solution for the lack of p-channel devices in GaN with acceptable performance. CMOS technology uses complementary and more symmetrical pairs of p- and n-type field-effect transistors (FETs), based on the mobilities of holes and electrons for both types of FETs. However, in GaN, the mobility of holes is about 60 times worse than that of electrons. That means a p-channel device, where holes are the principal carriers, would be 60 times larger than the n-channel counterpart and highly inefficient. A widespread alternative is replacing the P-MOS with a resistor. Resistor-Transistor Logic (RTL) has been employed for GaN ICs but shows trade-offs between switching time and power consumption.

“We have improved the performance of GaN ICs by using a combination of enhancement-mode and depletion-mode switches, called e-mode and d-mode HEMTS. By extending our functional e-mode HEMT platform on SOI with co-integrated d-mode HEMTS, now we can take the step from RTL to direct-coupled FET logic, which is expected to improve speed and reduce the power dissipation of the circuits,” said Stefaan Decoutere, program director of GaN power systems at imec.

Another critical component for co-integration on GaN power ICs is a Schottky barrier diode. GaN Schottky diodes combine higher blocking voltages with reduced switching losses compared to their silicon counterparts.

“We have successfully extended our 200 V GaN-on-SOI e-mode HEMT GaN ICs platform with monolithically-integrated high-performance Schottky barrier diodes and d-mode HEMTs, which brings us a step closer to smart power ICs based on GaN. This GaN-IC platform is available for prototyping through our multi-project-wafer (MPW) service,” adds Stefaan Decoutere. “Our platform is ready for transfer to partners. We’re looking for foundries, but also design houses and end-users. The next step will be developing and releasing a 650 Volt version of the platform. Target applications for GaN-on-SOI technology include high-voltage power switching and power conversion, fast chargers for mobile phones, tablets and laptops, and on-board chargers for electric cars, and invertors for solar panel connections to the grid”.

Featured Video
Jobs
Business Development Manager for Berntsen International, Inc. at Madison, Wisconsin
GIS Specialist for Washington State Department of Natural Resources at Olympia, Washington
Machine Learning Engineer 3D Geometry/ Multi-Modal for Autodesk at San Francisco, California
Principal Engineer for Autodesk at San Francisco, California
Mechanical Manufacturing Engineering Manager for Google at Sunnyvale, California
Senior Principal Software Engineer for Autodesk at San Francisco, California
Upcoming Events
URISA GIS Leadership Academy at Embassy Suites Fort Worth Downtown 600 Commerce Street Fort Worth, TX - Nov 18 - 22, 2024



© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation TechJobsCafe - Technical Jobs and Resumes  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise