Integrating CAE Simulation and FEA to Make Lightweight and Strong Parts

Nov 7, 2014 -- With the growing demand for lightweight designs and composite material applications, part designers and engineers across different industries had been challenged to search for a more innovative yet economic molding solution to stay competitive   while also opening up new opportunities in their  industries. Therefore, the conventional solid injection molding process could no longer satisfy the pressing need to reduce overall production cost while maintaining the competitive advantages for most businesses. Thus, MuCell®process, a novel approach to composite injection molding, was introduced.

In MuCell® process, Supercritical Fluid (SCF), usually as nitrogen (N2 ) or carbon dioxide (CO2), is mixed with polymer melt to create a uniform single-phase solution, and then injected into the mold cavity. The melt flow with bubbles will foam and form a part. The MuCell® Process generally offers a 50-75% improvement in key quality measures, such as flatness, roundness, and warpage, while also eliminating all sink marks. These improvements result from the fact that relatively uniform stress patterns are created in the molded part rather than non-uniform stress characteristics of solid molding. When compared with solid injection molding, MuCell®products rarely have shrinkage problems; the parts that are produced tend to comply far more closely with the mold shape and, presumably, the dimensional specifications of the part itself. In other words, using MuCell® process can help realize the lightweight design concepts with ease without too much compromise on the product mechanical strength.

However, users of MuCell ® process often face a difficult task of trying to find a perfect balance between achieving lightweight products and having sufficient mechanical strength of a finished part. As a result, a substantial amount of mold trials using trial-and-error were needed to attain the most optimized processing set-ups and quality finished parts. In order to alleviate the burden of tedious mold trials and provide further simulation insights into the complex MuCell® process for its users, Moldex3D introduces a new module, Micromechanics Interface to connect with nonlinear multi-scale material modeling software to make the simulation workflow more effective and efficient. Combining with structural analysis, nonlinear multi-scale material modeling software, such as Digimat and Converse, provides the capabilities to simulate the composite materials at micro-macro levels and gives users an opportunity to solve complex nonlinear multi-scale finite element problems. With Moldex3D Micromechanics Interface, users can now output the micromechanics properties of the MuCell® process, such as cell size and cell density, to Digimat and Converse, which previously was not available, for further structural performance assessment of MuCell® parts. Hence, the accuracy of the structural analysis of MuCell ® parts can be further ensured since the microcellular output is considered and incorporated in the structural computation.

 
In Product Lifecycle Management (PLM), special attention needs to be given to the process-induced properties in the mold-filling analysis in order to get an accurate simulation assessment on product structural analysis. It used to be neglected in the past and it tends to mislead the simulated structure analysis result as the real representation of the final product structural strength.
 
In reality, the different molding process-induced properties can result in various results of the product structural analyses. In order to help users attain an accurate structural analysis, Moldex3D Micromechanics Interface can successfully connect Moldex3D with nonlinear multi-scale material modeling software like Digimat and Converse. Users can now output the micromechanics properties of MuCell® process, such as cell size and cell density, to Digimat and Converse to attain an accurate structural analysis, thus making PLM more efficient and effective.
 
 


Read the complete story ...
Featured Video
Latest Blog Posts
Jobs
Sr. GIS Apps Product Engineer for ESRI at Portland, ME, Maine
Business Development Manager for Berntsen International, Inc. at Madison, Wisconsin
Sr. GIS Apps Product Engineer for ESRI at Portland, Oregon
Geoprocessing Product Engineer II for ESRI at Redlands, California
Equipment Engineer, Raxium for Google at Fremont, California
Mechanical Engineer 3 for Lam Research at Fremont, California
Upcoming Events
GeoBuiz Summit 2025 at Hyatt Regency Aurora-Denver Conference Center. Denver CO - Jan 13 - 15, 2025
Coastal GeoTools 2025 Conference at 301 North Water Street - Jan 27 - 30, 2025
GEO Week 2025 at Colorado Convention Center Denver CO - Feb 10 - 12, 2025



© 2025 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation TechJobsCafe - Technical Jobs and Resumes  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise