SRC and UC Berkeley Pursue More Cost-Effective Approach to 3D Chip Integration Compared to Current 3D Interconnect Solutions

Research Promises to Lead to Increased Functionality for Advanced Mobile Devices and Wearable Electronics

RESEARCH TRIANGLE PARK, N.C. — (BUSINESS WIRE) — May 7, 2014 — University of California, Berkeley researchers sponsored by Semiconductor Research Corporation (SRC), the world’s leading university-research consortium for semiconductors and related technologies, are pursuing a novel approach to 3D device integration that promises to lead to advanced mobile devices and wearable electronics featuring increased functionality in more low-profile packages.

The research focuses on integrating extra layers of transistors on a vertically integrated 3D monolithic chip using printing of semiconductor “inks” as compared to the current method of chip-stacking through 3D interconnect solutions.

The new process technology could help semiconductor manufacturers develop smaller and more versatile components that are less expensive and higher performing by enabling cost-effective integration of additional capabilities such as processing, memory, sensing and display. The low-temperature process is also compatible with polymer substrates, enabling potential new applications in wearable electronics and packaging.

Current efforts on 3D integration have used transfer of thin single crystal semiconductor layers, polycrystalline silicon deposited by chemical vapor disposition, or other growth techniques to realize integrated devices.

“Compared to these approaches, we believe our approach is simpler and potentially with significantly lower cost,” said Vivek Subramanian, professor of Electrical Engineering and Computer Sciences at UC Berkeley. “Our goal in this work is to maximize performance, with the hope that this will make the cost versus performance tradeoff worthwhile relative to other approaches.”

Specifically, the UC Berkeley team is developing directly-printed transparent oxide transistors as a path to realizing additional layers of active devices on top of CMOS metallization.

To fabricate such devices, new material and process methodologies are needed for depositing nanoparticles for semiconductors, dielectrics and conductors. The research is particularly focused on solution-based processing due its low temperature compatibility with CMOS metallization as well as the potential for lower cost manufacturing.

“Initial results from the Berkeley team show that reasonably high performance can be obtained from ink-jet printed devices with process temperatures that are compatible with post-CMOS metallization, thus enabling a new route to monolithic 3D integration,” said Bob Havemann, Director of Nanomanufacturing Sciences at the SRC.

About SRC

Celebrating more than 30 years of collaborative research for the semiconductor industry, SRC defines industry needs, invests in and manages the research that gives its members a competitive advantage in the dynamic global marketplace. Awarded the National Medal of Technology, America’s highest recognition for contributions to technology, SRC expands the industry knowledge base and attracts premier students to help innovate and transfer semiconductor technology to the commercial industry. For more information, visit https://www.src.org/.



Contact:

Integrity Global for SRC
Dan Francisco, 916-812-8814
Email Contact

Featured Video
Jobs
GIS Specialist for Washington State Department of Natural Resources at Olympia, Washington
Business Development Manager for Berntsen International, Inc. at Madison, Wisconsin
Manufacturing Test Engineer for Google at Prague, Czechia, Czech Republic
Mechanical Manufacturing Engineering Manager for Google at Sunnyvale, California
Principal Engineer for Autodesk at San Francisco, California
Machine Learning Engineer 3D Geometry/ Multi-Modal for Autodesk at San Francisco, California
Upcoming Events
URISA GIS Leadership Academy at Embassy Suites Fort Worth Downtown 600 Commerce Street Fort Worth, TX - Nov 18 - 22, 2024



© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation TechJobsCafe - Technical Jobs and Resumes  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise