All Categories : Technical Papers : 2014 ASPRS Louisville Proceedings Bookmark and Share

Title : Solution Frequency-Based Procedure for Automated Registration of Terrestrial Laser Scans Using Linear Features
Company : University of Calgary
File Name : AL-Durgham.pdf
Size : 478309
Type : application/pdf
Date : 09-May-2014
Rating :
Downloads : 6

Rate This File
5 Stars
4 Stars
3 Stars
2 Stars
1 Star

Authors: Kaleel Al-Durgham, Ayman Habib, Mehdi Mazaheri

Over the last decade, terrestrial laser scanner systems have been proven to be an effective tool for the acquisition of 3D spatial information over physical surfaces. Many factors such as the low cost and the ability of rapidly collecting dense and accurate spatial data led to the utilization of laser scanners in different applications such as industrial sites modeling, 3D documentation of buildings, and many civilian and military needs. Usually, a complete 3D model for a given site cannot be derived from a single scan. Therefore, several scans with significant overlap are needed to cover the entire site and also to attain better information about the site than what could be obtained from a single scan. However, the collected scans will be referenced to different local frames that are associated with the individual scanner locations. Hence, a registration process, which aims at estimating the 3D-Helmert transformation parameters, should be established to realign the different scans to a common reference frame. This paper introduces a new methodology for the automatic registration of terrestrial laser scans using linear features. Linear, cylindrical, and pole-like features are directly extracted from the scans through a region-growing procedure. Hypothesized conjugates of linear features are identified using invariant separation characteristics such as spatial separation and angular deviation between two linear features. All the hypothesized conjugate pairs – taken one at a time – are used to estimate the 3D-Helmert transformation parameters that are required to realign one scan to the reference coordinate system of another scan. Logically, only the right conjugate pairs among the hypothesized matches will lead to similar solutions of the transformation parameters. Therefore, we developed a strategy to detect the most frequent set of estimated parameters. A linear mathematical model that utilizes quaternions to represent rotation angles is used to simplify the estimation of the transformation parameters. Experiments will assess the performance of the proposed methodology over multiple scans of a power plant.
User Reviews More Reviews Review This File
Featured Video
Latest Blog Posts
Jobs
Sr. GIS Apps Product Engineer for ESRI at Portland, Oregon
Geoprocessing Product Engineer II for ESRI at Redlands, California
Sr. GIS Apps Product Engineer for ESRI at Portland, ME, Maine
Business Development Manager for Berntsen International, Inc. at Madison, Wisconsin
Mechanical Engineer 3 for Lam Research at Fremont, California
Senior Principal Software Engineer for Autodesk at San Francisco, California
Upcoming Events
GeoBuiz Summit 2025 at Hyatt Regency Aurora-Denver Conference Center. Denver CO - Jan 13 - 15, 2025
Coastal GeoTools 2025 Conference at 301 North Water Street - Jan 27 - 30, 2025
GEO Week 2025 at Colorado Convention Center Denver CO - Feb 10 - 12, 2025



© 2025 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation TechJobsCafe - Technical Jobs and Resumes  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise