GeckoSystems' CEO to Outline the Future of Robotics in Healthcare at "Mobile Robots in Motion" Conference

CONYERS, GA -- (MARKET WIRE) -- Nov 04, 2009 -- GeckoSystems Intl. Corp. (PINKSHEETS: GCKO) today announced that Martin Spencer, GeckoSystems' president and chief executive officer, will discuss the role of robots in the future of healthcare during their "Mobile Robots in Motion" conference in Atlanta, Ga. GeckoSystems is a dynamic leader in the emerging mobile robotics industry, revolutionizing their development and usage with "Mobile Robot Solutions for Safety, Security and Service™." GeckoSystems is committed to delivering home care robots, such as their CareBot™, as an assistive technology to promote wellness and enhance quality of life for seniors and their families.

"GeckoSystems' consumer healthcare mission is to add years of independent living to the elderly at acceptable levels of risk to the primary caregivers. As an emerging leader in-home care robots, we believe that we have something unique and significant to offer in the field of healthcare due to the dramatic cost savings," stated Spencer.

GeckoSystems is demonstrating at their conference this week that their next-generation practical, personal companion robots have the ability to help caregivers perform critical eldercare monitoring and extend the time that people can live independently. Their CareBot home care robot is capable of assisting in senior care in a variety of real-life situations, such as on-time reminders of medication and enabling a sense of safety due to being "watched over" by family members.

GeckoSystems recently announced their plans to conduct in-home evaluation trials of their advanced home care robots, the CareBot. Due to the end user customization capability of their verbal interaction AI software, GeckoChat™, many perceive the CareBot as being capable of being a personal companion robot with desirable social interaction beyond rote recitation of medication reminders.

Like an automobile, mobile robots are made from steel, aluminum, plastic, and electronics, but with ten to twenty times the amount of software running. The CareBot has an aluminum frame, plastic shroud, two independently driven wheels, multiple sensor systems, microprocessors and several onboard computers connected in a local area network (LAN). The microprocessors directly interact with the sensor systems and transmit data to the onboard computers. The onboard computers each run independent, highly specialized cooperative/subsumptive artificial intelligence (AI) software programs, GeckoSavants™, which interact to complete tasks in a timely, intelligent and common sense manner. GeckoNav™, GeckoChat and GeckoTrak™ are primary GeckoSavants. GeckoNav is responsible for maneuvering, avoiding dynamic and/or static obstacles, seeking waypoints and patrolling. GeckoChat is responsible for interaction with the care-receiver such as answering questions, assisting with daily routines and reminders, and responding to other verbal commands. GeckoTrak, which is mostly transparent to the user, enables the CareBot to maintain proximity to the care-receiver using sensor fusion. The CareBot is an internet appliance that is accessible for remote video/audio monitoring and telepresence.

As predicted in the recent Forbes' article ( http://www.forbes.com/2009/09/17/robots-health-care-technology-breakthroughs-telehealth.html), due to the sufficiency and cost effective robustness of GeckoSystems' first product, the CareBot™, near term in-home evaluation trials have been recently announced. This conference will enable many industry observers to witness and determine for themselves the proximity to market and consumer acceptance their first product will enjoy.

Journalists are encouraged to contact Mr. Spencer regarding the progress of GeckoSystems and potential attendance at the upcoming GeckoSystems' invitation only "Mobile Robots in Motion" conference. Journalists and other interested parties may submit their request for an invitation at their website or call 678-413-1640.

About GeckoSystems International Corporation:

Since 1997, GeckoSystems has developed a comprehensive, coherent, and sufficient suite of hardware and software inventions to enable a new type of home appliance (a personal companion robot) the CareBot™, to be created for the mass consumer marketplace. The suite of primary inventions includes: GeckoNav™, GeckoChat™ and GeckoTrak™.

The primary market for this product is the family for use in eldercare, care for the chronically ill, and childcare. The primary distribution channel for this new home appliance is the thousands of independent personal computer retailers in the U.S. The manufacturing infrastructure for this new product category of mobile service robots is essentially the same as the personal computer industry. Several outside contract manufacturers have been identified and qualified their ability to produce up to 1,000 CareBots per month within four to six months.

The Company is market driven. At the time of founding, nearly 12 years ago, the Company did extensive primary market research to determine the demographic profile of the early adopters of the then proposed product line. Subsequent to, and based on that original market research, they have assembled numerous focus groups to evaluate the fit of the CareBot personal robot into the participant's lives and their expected usage. The Company has also frequently employed the Delphi market research methodology by contacting and interviewing senior executives, practitioners, and researchers knowledgeable in the area of elder care. Using this factual basis of internally performed primary and secondary market research, and third party research is the statistical substance for the Company's sales forecasts.

Not surprisingly the scientific statistical analyses applied revealed that elderly over sixty-five living alone in metropolitan areas with broadband Internet available and sufficient household incomes to support the increased costs were identified as those most likely to adopt initially. Due to the high cost of assisted living, nursing homes, etc. the payback for a CareBot™ is expected to be only six to eight months while keeping elderly care receivers independent, in their own long time homes, and living longer due to the comfort and safety of more frequent attention from their loved ones.

Using U.S. Census Bureau data and various predictive statistical analyses, the Company projects the available consumer market size in dollars for cost effective, utilitarian, multitasking eldercare personal robots in 2010 to be $74.0B, in 2011 to be $77B, in 2012 to be $80B, in 2013 to be $83.3B, and in 2014 to be $86.6B. With market penetrations of 0.03% in 2010, 0.06% in 2011, 0.22% in 2012, 0.53% in 2013, and 0.81% in 2014, we will anticipate CareBot sales, from this consumer market segment, only, of $22.0M, $44.0M, $176M, $440.2M, and $704.3M, respectively. The Company expects these sales despite -- and perhaps because of -- the present recession due to pent up demand for significant cost reduction in eldercare expenses.

The foregoing forecasts do not include sales in non-metropolitan areas; elderly couples over 65 (only elderly living alone are in these forecasts); those chronically ill -- regardless of age -- or elderly living with their adult children.

The Company's "mobile robot solutions for safety, security and service™" are appropriate not only for the consumer, but also professional healthcare, commercial security and defense markets. Professional healthcare require cost effective, timely errand running, portable telemedicine, etc. Homeland Security requires cost effective mobile robots to patrol and monitor public venues for weapons and WMD detection. Military users desire the elimination of the "man in the loop" to enable unmanned ground and air vehicles to not require constant human control and/or intervention.

The Company's business model is very much like that of an automobile manufacturer. Due to the final assembly, test, and shipping being done based on geographic and logistic realities; strategic business-to-business relationships can range from private labeling to joint manufacturing and distribution to licensing only.

Several dozen patent opportunities exist for the Company due to the many innovative and cost effective breakthroughs embodied not only in GeckoNav, GeckoChat, and GeckoTrak, but also in additional, secondary systems that include: GeckoOrient™, GeckoMotorController™, the GeckoTactileShroud™, the CompoundedSensorArray™, and the GeckoSPIO™.

The present senior management at GeckoSystems has over thirty-five years experience in consumer electronics sales and marketing and product development. Senior managers have been identified for the areas of manufacturing, marketing, sales, and finance.

While GeckoSystems has been in the Development Stage, the Company has accumulated losses to date in excess of six million dollars. In contrast, the Japanese government has spent one hundred million dollars in grants (to Sanyo, Toshiba, Hitachi, Fujitsu, NEC, etc.) over the same time period to develop personal robots for their eldercare crisis, yet no viable solutions have been developed.

By the end of this year, the Company plans to complete productization of its CareBot offering with the introduction of its fourth generation personal robot, the CareBot 4.0 MSR. The Company expects to be the first personal robot developer and manufacturer in the world to begin in-home eldercare evaluation trials.

What Does a CareBot Do for the Caregiver?

The short answer is that it decreases the difficulty and stress for the caregiver that needs to watch over Grandma, Mom, or other family members most, if not much, of the time day in and day out due to concerns about their well being, safety, and security.

But, first let's look at some other labor saving, automatic home appliances most of us use routinely. For example, needing to do two or more necessary chores and/or activities at the same time, like laundering clothes and preparing supper.

The automatic washing machine needs no human intervention after the dirty clothes are placed in the washer, the laundry powder poured in, and the desired wash cycle set. Then, this labor saving appliance runs automatically until the washed clothes are ready to be placed in another labor saving home appliance, the automatic clothes dryer. While the clothes are being washed and/or dried, the caregiver prepares supper using several time saving home appliances like the microwave oven, "crock" pot, blender, and conventional stove, with possible convection oven capabilities.

After supper, the dirty pots, pans, and dishes are placed in the automatic dishwasher to be washed and dried while the family retires to the den to watch TV, and/or the kids to do homework. Later, perhaps after the kids have gone to bed, the caregiver may then have the time to fold, sort, and put up the now freshly laundered clothes.

1 | 2  Next Page »
Featured Video
Jobs
Principal Engineer for Autodesk at San Francisco, California
Manufacturing Test Engineer for Google at Prague, Czechia, Czech Republic
Equipment Engineer, Raxium for Google at Fremont, California
Mechanical Test Engineer, Platforms Infrastructure for Google at Mountain View, California
Senior Principal Mechanical Engineer for General Dynamics Mission Systems at Canonsburg, Pennsylvania
Mechanical Manufacturing Engineering Manager for Google at Sunnyvale, California
Upcoming Events
Intergeo 2024 at Messe Stuttgart Messepiazza 1 Stuttgart Germany - Sep 24 - 26, 2024
GIS-Pro 2024 at Portland ME - Oct 7 - 10, 2024
Geo Sessions 2024 at United States - Oct 22 - 24, 2024



© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation TechJobsCafe - Technical Jobs and Resumes  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise